售前电话
135-3656-7657
售前电话 : 135-3656-7657
学习知识要善于思考,思考,再思考。我就是靠这个方法成为科学家的。 —爱因斯坦(A.Einstein)
一、接收机比特误码率(BER)
数字接收机的性能指标由比特误码率(BER)决定,定义BER为码元在传输过程中出现差错的概率,工程中常用一段时间内出现误码的码元数与传输的总码元数之比来表示。例如,BER=10-6,表示每传输百万比特只允许错1比特;如BER=10-9,则表示每传输10亿比特只允许错1比特。通常,数字光接收机要求BER≤10-9。此时,定义接收机灵敏度为保证比特误码率为10-9时,要求的最小平均接收光功率(Prec)。假如一个接收机用较少的入射光功率就可以达到相同的性能指标,那么可以说该接收机更灵敏些。影响接收机灵敏度的主要因素是各种噪声。
由于超强前向纠错(SFEC)和电子色散补偿的应用,使纠错能力大为提高,当Q=6.3dB时,容许系统送入纠错模块前的BER甚至可以达到2×10-2。
二、比特误码率用Q参数表示
图7.3.1为噪声引起信号误码的图解说明。由图可见,由于叠加了噪声,使“1”码在判决时刻变成“0”码,经判决电路后产生了一个误码。
图7.3.1噪声引起误码的图解说明
a)系统构成b)发射信号Pt(t)c)在接收端探测到的带有噪声的接近升余弦波形的信号Sr(t)
d)由于噪声叠加,使“1”码在判决时刻变成“0”码,经判决电路后产生了一个误码
图7.3.1c表示判决电路接收到的信号,由于噪声的干扰,在信号波形上已叠加了随机起伏的噪声。判决电路用恢复的时钟在判决时刻tD对叠加了噪声的信号取样。等待取样的“1”码信号和“0”码信号分别围绕着平均值I1和I0摆动,如图7.3.2所示。判决电路把取样值与判决门限ID比较,如果I>ID,认为是“1”码;如果I<ID,则认为是“0”码。由于接收机噪声的影响,可能把比特“1”判决为I<ID,误认为是“0”码;同样也可能把“0”码错判为“1”码。误码率包括这两种可能引起的误码,因此误码率为
式中,P(1)和P(0)分别是接收“1”和“0”码的概率,P(0/1)是
把“1”判为“0”的概率,P(1/0)是把“0”判为“1”的概率。对脉冲编码调制(PCM)比特流,“1”和“0”发生的概率相等,P(1)=P(0)=1/2。因此比特误码率为
图7.3.2a表示判决电路接收到的叠加了噪声的PCM比特流,图7.3.2b表示“1”码信号和“0”码信号在平均信号电平I1和I0附近的高斯概率分布,阴影区表示当I1<ID或I0>ID时的错误识别概率。
图7.3.2二进制信号的误码概率计算
a)判决电路接收到的叠加了噪声的PCM比特流,判决电路在判决时刻tD对信号取样
b)“1”码信号和“0”码信号在平均信号电平I1和I0附近的高斯概率分布,阴影区表示当I1<ID或I0>ID时的错误识别概率
可以证明,最佳判决值的比特误码率为
式中
σ1表示接收“1”码的噪声电流,σ0表示接收“0”码时的噪声电流,erfc代表误差函数erf(x)的互补函数。
图7.3.3表示Q参数和比特误码率(BER)及接收到的信噪比(SNR)的关系,信号用峰值(pk)功率表示,噪声用均方根噪声(rms)功率表示。由图可见,随Q值的增加,BER下降,当Q>7时,BER<10-12。因为Q=6时,BER=10-9,所以Q=6时的平均接收光功率就是接收机灵敏度。近来超强前向纠错(SFEC)和电子色散补偿的应用,使纠错能力大为提高。
图7.3.3Q参数和比特误码率及接收到的信噪比的关系
三、Q参数和信噪比(SNR)的关系——Q的平方等于SNR
把简单的事情考虑得很复杂,可以发现新领域;把复杂的现象看得很简单,可以发现新定律。